ELE538-Information Theoretic Security Home work - 1

(a) $X \sim \operatorname{Geom}(1 / 2) \quad P_{x}(k)=\left(\frac{1}{2}\right)^{k}, \quad \mathbb{E}[x]=2$
$H(x)=\sum_{k=1} P_{x}(k) \log _{2} 2^{k}=\mathbb{E}[x]=2$ bits
(b)

Algorithm:

1. Set $i=1$
2. Ask "Is $X \in\{i\}$?". Wait for answer.
3. If the answer is "No" increment ; and go to step 2 .

If the answer is "Yes" stop.
$\mathbb{E}[\#$ of y / N questions $]=\sum_{k=1}^{\infty} k\left(\frac{1}{2}\right)^{k}=\mathbb{E}[x]=2=H(x)$
Note: $(*$ Suggests that the above scheme of Y / N questions is optimal.
2.4
(a) By chain ole for entry.
(b) $g(x)$ is o deterministic function of X. Thus, given x, thee is nothing menton regor ding $g(x) \Rightarrow H(g(x) \mid x)=0$
(c) By chain rule of entropy.
(d) Conditional entropy is non-ngegotive. Equity holds rf g^{-1} is welt -defined (ie, when g is bjecection)
2.8
\rightarrow Drawing $k \geqslant 2$ bolls with replocement has higher entropy here is why:
Let X_{i} denote the random variable of drawing a boll from the urn the i-th time $\omega /$ replacement, and Y_{i} denote the random variable of drawing a boll from the urn the i-th time w/out replacement.
Note that $X_{1}, X_{2}, \ldots, X_{k}$ are i.i.d random variobles, whereas Y_{i} depends on $Y^{i-1} \forall i \geqslant 2$. Note further that X_{i} and Y_{i} are identically distributed

$$
H\left(x_{1}, \ldots, x_{k}\right)=\sum_{i=1}^{k} H\left(x_{i}\right) \quad \text { and } H\left(y_{1}, \ldots, y_{k}\right)=\sum_{i=1}^{k} H\left(y_{i} \mid y^{i-1}\right)
$$

Since conditioning reduces entropy, we have $H\left(Y_{i}\right) \geqslant H\left(y_{i} \mid Y^{i-1}\right) \forall i \geqslant 2$ and since Y_{i} and X_{i} are identically distributed it follows that $H\left(X_{i}\right)=H\left(Y_{i}\right) \geqslant H\left(y_{i} \mid Y^{i-1}\right)$
2.9
(a) Let $\rho(x, y)=H(X \mid y)+H(y \mid x)$
(i) $\rho(x, y) \geqslant 0$ as conditional entropy is non-negotive
(ii) $\rho(x, y)=\rho(y, x)$ is clear from the definition
(iii) If equality $x=y$ means $f f$ a bijection such that $f(x)=y$, then

- when $X=y ; H(x \mid f(x))+H(f(x) \mid x)=0$ and
- $\rho(x, y)=0 \Rightarrow H(x \mid y)=0$ and $H(y \mid x)=0 \Rightarrow \exists f$, a bijection such that $f(x)=y$.
(iv) $H(X \mid y)+H(y \mid x)+H(y \mid z)+H(z \mid y) \geq H(x, y \mid z)+H(y, z \mid x)$

$$
\begin{equation*}
\geqslant H(X \mid z)+H(z \mid x) \tag{*}
\end{equation*}
$$

where (*) follows from the followings

$$
\begin{aligned}
& H(x \mid y) \geqslant H(x \mid y, z) \\
& H(z \mid y) \geqslant H(z \mid y, x)
\end{aligned}
$$

and (**) follows from the fact that joint entropy is no-less than marginal entropies. (in other words, $(* *)$ follows because $H(y \mid x, z) \geqslant 0$)
(b) Note that $I(x ; y) \stackrel{(1)}{=} H(x)-H(x \mid y) \stackrel{(2)}{=} H(y)-H(y \mid x) \stackrel{(3)}{=} H(x)+H(y)-H(x, y)$.

- So $H(x)+H(y)-2 I(x ; y)=H(x \mid y)+H(y \mid x)=\rho(x, y)$ Hence, (2.172) follows from (1) and (2)

Note further that $H(x, y) \stackrel{(4)}{=} H(x)+H(y)-I(x ; y)$.

- Using (2.172), and (4), (2.173) is now verified.
- (2.174) follows from (3) and (2.173)
2.10 (a) Let $f(x)=1\left\{x=x_{1}\right\}$

Note that $H(X)=H(x, f(x))=H(f(x))+H(X) f(x))$

$$
=H(\alpha)+\alpha H\left(X_{1}\right)+(1-\alpha) H\left(X_{2}\right)
$$

where $H(\alpha)$ denotes the binary entropy function.
(b)

$$
\frac{d}{d \alpha} H(x)=0 \Rightarrow \log _{2} \frac{1-\alpha}{\alpha}+H\left(x_{1}\right)-H\left(x_{2}\right)=0 \Rightarrow \alpha=\frac{1}{1+2^{-\left(H\left(x_{1}\right)-H\left(x_{2}\right)\right)}}
$$

Note that $H(x)$ is a concave function of α. (because $H(\alpha)$ is concave and $\alpha H\left(x_{1}\right)+\left((1 \alpha) H\left(x_{2}\right)\right.$ is linear war. α) As a result, global maximum is achieved at $\alpha=\frac{1}{1+2^{-\left(H\left(x_{i}\right)-H\left(x_{i}\right)\right)}}$

Let $\xi=H\left(x_{1}\right)-H\left(x_{2}\right)$ and $\alpha^{*}=\frac{1}{1+2^{-\xi}}$ and note that

$$
\begin{aligned}
& H(X) \leqslant H\left(\alpha^{*}\right)+\alpha^{*} H\left(x_{1}\right)+\left(1-\alpha^{*}\right) H\left(x_{2}\right) \\
&=\log _{2}\left(1+2^{-\xi}\right)+\left(1-\alpha^{*}\right) \xi+\alpha^{*} H\left(x_{1}\right)+(1-\alpha)^{*} H\left(x_{2}\right) \\
&=\log _{2}\left(1+2^{-H\left(x_{1}\right)+H\left(x_{2}\right)}\right)+H\left(x_{1}\right)=\log \left(2^{H\left(x_{1}\right)}+2^{H\left(x_{2}\right)}\right) \\
& \Rightarrow 2^{H(x)-H\left(x_{1}\right)} \leqslant 1+2^{-H\left(x_{1}\right)+H\left(x_{2}\right)} \Rightarrow 2^{H(x)} \leqslant 2^{H\left(x_{1}\right)}+2^{H\left(x_{2}\right)}
\end{aligned}
$$

(Note that since $\frac{d}{d \alpha} H(\alpha)=\log \frac{1-\alpha}{\alpha}$ for any arbitrary logarithm bose, the following result comes for free

$$
b^{H(x)} \leqslant b^{H\left(x_{1}\right)}+b^{H\left(x_{2}\right)} \quad \forall b>1
$$

2.17
(a) X_{i} are i.i.d $\operatorname{Ber}(p)$
(b) $H\left(x_{1}, \ldots, x_{n}\right) \geqslant H\left(f\left(x_{1}, \ldots, x_{n}\right)\right)$ where $f\left(x_{1}, \ldots, x_{n}\right)=\left(Z_{1}, \ldots, z_{K}\right)$ with random K
(c) Chain rule: $H(v, \omega)=H(\omega)+H(v / \omega)$
(d) Z_{i} are iid $\operatorname{Ber}(1 / 2) H\left(z_{1} \cdots, z_{k} \mid k=k\right)=k$ bits so $H\left(P_{z_{1} \cdots z_{k}} \mid k\right)=\mathbb{E}_{k}\left[H\left(P_{z_{1} \cdots z_{k} \mid k}(\cdots \mid K)\right]=\mathbb{E}[k]\right.$
(e) $H(K) \geqslant 0$

A good map f on sequences of length 4:

- To maximize the expected number of pure bits, we combine non-pure bits of same probability. Note that in $\left(X_{1}, \ldots, X_{4}\right)$

Therefore, let f be the following Map:

This should be a pood map as we utilize every possible outcome of $\left(X_{1}, \ldots, X_{4}\right)$ except that 0000 and 1111 which are the most unlibely/likely sequence (depending on the valve of P).
$2.37 D\left(P_{x y z} \| P_{x} P_{y} P_{z}\right)=H(x)+H(y)+H(z)-H(x, y, z)$
The given quantity is equal to 0 iff $\quad P_{x y z}=P_{x} P_{y} P_{z}$, ie., $D\left(P_{x y}, \| P_{x} P_{y} P_{z}\right)=0$ if $x, Y_{\text {and }} z$ are independent fran each other.

$$
\begin{aligned}
& D\left(P_{x y z} \| P_{x} P_{y} P_{z}\right)=\mathbb{E}\left[\operatorname{lgo} \frac{P_{x y z}(x, y, z)}{\left.P_{x}(x) P_{y}(y) P_{z}(z)\right]}\right]=\mathbb{E}\left[\log \frac{P_{x}(x, y)}{P_{x}(x) P_{y}(y)}+\log \frac{P_{z \mid x y}(z \mid x, y) P_{x y}(x, y)}{P_{z}(z) P_{x y}(x, y)}\right] \\
&=I(x ; y)+I(z ; x, y) \quad(*) \\
&\text { [or vising similar derivation (*) is equal to: } I(x ; z)+I(y ; x, z) \text { and } I(y ; z)+I(x ; y, z)]
\end{aligned}
$$

2.41
(a) $I(x ; \theta, A)=I(x ; \theta)+I(x ; A \mid \theta) \quad$ (Chain wee for mutual information)

$$
\begin{array}{ll}
=I(X ; A \mid \theta) & (X \Perp Q) \\
=H(A \mid \theta)-H(A \mid Q, X) & \\
=H(A \mid \theta) & \\
& \left(H(A \mid Q, x)=0 \text { as } A \text { is deterministic function of } Q_{\text {and }} X,\right)
\end{array}
$$

Interpretation: The uncertainty removed by (θ, A) pair is the some as the average information of the answer A given the question Q.(Note that information of on outcome x of a discrete riv. X is given by $\nu_{x}(x)=1 y \frac{1}{P_{x}(x)}$.)
(b) $I\left(x ; \theta_{1}, A_{1}, \theta_{2}, A_{2}\right)=I\left(x ; \theta_{1}, A_{1}\right)+I\left(x ; \theta_{2}, A_{2} \mid \theta_{1}, A_{1}\right)$

So it suffices to show that $I\left(X ; Q_{2}, A_{2} \mid \theta_{1}, A_{1}\right) \leqslant H\left(A_{2} \mid \theta_{2}\right)=I\left(X ; \theta_{2}, A_{2}\right)$
In that respect, note that

$$
\begin{align*}
I\left(x ; \theta_{2}, A_{2} \mid \theta_{1}, A_{1}\right) & =I\left(X ; \theta_{2} \mid \theta_{1}, A_{1}\right)+I\left(X ; A_{2} \mid \theta_{1}, A_{1}, \theta_{2}\right) \tag{1}\\
& =I\left(X ; A_{2} \mid \theta_{1}, A_{1}, \theta_{2}\right) \tag{2}\\
& =H\left(A_{2} \mid \theta_{1}, A_{1}, \theta_{2}\right)-H\left(A_{2} \mid \theta_{1}, A_{1}, \theta_{2}, x\right) \tag{B}\\
& =H\left(A_{2} \mid \theta_{1}, A_{1}, \theta_{2}\right) \tag{4}\\
& \leq H\left(A_{2} \mid \theta_{2}\right) \tag{5}
\end{align*}
$$

where (1) follows from chain rule, (2) follows become X does not depend on Q_{2}, (4) follows because given θ_{2} and X, A_{2} is deterministic, (5) is due to the fact that further conditioning cannot increase entropy.
3.4 X_{i} ind $\sim p(x)$ on $\{1,2, \ldots, m\}, \mu=\mathbb{E}[x], H=\sum p(x) \left\lvert\, g p \frac{1}{p(a)}\right.$

$$
A_{n}=\left\{x^{n} \in X^{n}:\left|\frac{1}{n} \log \frac{1}{\rho\left(x^{n}\right)}-H\right| \leqslant \varepsilon\right\} \text { and } B^{n}=\left\{x^{n} \in X^{n}:\left|\frac{1}{n} \sum_{i=1}^{n} x_{i}-\mu\right| \varepsilon\right\}
$$

(a) $\mathbb{P}\left[x^{n} \in A^{n}\right] \rightarrow 1$ as $n \rightarrow \infty$, because of AEP Theorem
(b) $\mathbb{P}\left[x^{1} \in A^{n} \cap B^{n}\right]=1-\mathbb{P}\left[x^{n} \in\left(A^{n}\right)^{c} \cup\left(B^{n}\right)^{n}\right] \geqslant 1-\left(\mathbb{P}\left[x^{n} \in\left(A^{n}\right)\right]+\mathbb{P}\left[x^{n} \in\left(B^{n}\right)^{n}\right]\right)$
$\mathbb{P}\left[x^{n} \in\left(A^{n}\right)\right] \rightarrow 0$ by AEP Theorem, $\mathbb{P}\left[x^{n} \in\left(B^{n}\right)^{c}\right] \rightarrow 0$ by LLN
It follows that $\mathbb{P}\left[x^{n} \in A^{n} \cap B^{n}\right] \rightarrow 1$.
(c) $1 \geqslant \sum_{x \in A n n^{c}} p\left(x^{n}\right) \geqslant\left|A^{n} n B^{n}\right| \cdot 2^{-n(H+\varepsilon)} \Rightarrow\left|A^{n} \cap B^{n}\right| \leqslant 2^{n(H+\varepsilon)} \quad \forall n$.
L_{B} definition of A^{n}.
(d) Since $\mathbb{P}\left[x^{n} \in A^{n} \cap B^{n}\right] \rightarrow 1$, for sufficiently large n, we have $\frac{1}{2} \leq \mathbb{P}\left[X^{n} \in A^{n} n B^{n}\right]=\sum_{x^{*} \in A^{n} B^{n}} P\left(x^{n}\right) \leq\left|A^{n} \cap B^{n}\right| 2^{-n(H-\varepsilon)} \Rightarrow\left|A^{n} \cap B^{n}\right| \geqslant \frac{1}{2} 2^{n(H-\varepsilon)}$ for sufficiently $L_{\text {by }}$ definition of A^{n} loge n.
3.10

$$
\begin{aligned}
& V_{n}^{1 / n}=\left(\prod_{i=1}^{n} X_{i} X^{1 / n} \Rightarrow \frac{1}{n} \log V_{n}=\frac{1}{n} \sum_{i=1}^{n} \log X_{i} \frac{n-\infty}{L L N} \mathbb{E}\left[\log X_{1}\right]=\int_{0}^{\prime} \log (x) d x=-1\right. \\
& \lim _{n \rightarrow \infty} V_{n}^{1 / n}=\lim _{n \rightarrow \infty} e^{\log V_{n}^{1 / n}}=e^{-1} \quad \text { (because } e^{x} \text { is a contivivous function) } \\
& \mathbb{E}\left[V_{n}\right]=\int_{0}^{1} \int_{0}^{1} \int_{0}^{\prime}\left(x_{1} x_{2} \cdots x_{n}\right) d x_{1} d x_{2} \cdots d x_{n} \quad \mathbb{E}\left[V_{n}\right]=(1 / 2)^{n} \quad \lim _{n \rightarrow \infty}\left(\mathbb{E}\left[v_{n}\right]\right)^{1 / n}=1 / 2>1 / e
\end{aligned}
$$

3.11
(a) $\mathbb{P}[A \cap B]=1-\mathbb{P}\left[A^{c} \cup B^{c}\right] \geqslant 1-\mathbb{P}\left[A^{c}\right]-\mathbb{P}\left[B^{c}\right] \geqslant 1-\varepsilon_{1}-\varepsilon_{2}$

$$
L_{\text {minim band }} \quad\left\llcorner\mathbb{P}\left[A^{c}\right] \leqslant \varepsilon_{1} \text { and } \mathbb{P}\left[\Delta^{c}\right] \leqslant \varepsilon_{2}\right.
$$

(b)

$$
\begin{aligned}
& 1-\varepsilon-\delta \leqslant \mathbb{P}\left[A_{\varepsilon}^{(n)} \cap B_{\varepsilon}^{(n)}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \leqslant \sum_{f_{\varepsilon}^{m} n \varepsilon_{\varepsilon}^{m}} 2^{-n(H-\varepsilon)} \\
& =\left|A_{\varepsilon}^{(n)} \cap B_{s}^{(\omega)}\right| 2^{-n(H-c)} \\
& \leqslant\left|8_{8}^{(n)}\right| 2^{-n(H-\delta)}
\end{aligned}
$$

(follows from port (a))
(definition of $\mathbb{P}\left[A_{\varepsilon}^{(1)} \cap \mathbb{B}_{\delta}^{(n)}\right]$)
(follows from the definition of the typical set $A_{c}^{(1)}$)
(Term inside summation no logger depends on summa tion index x^{n})

$$
\left(A_{\delta}^{(\omega)} \cap B_{\delta}^{(n)}\right) \subseteq B_{\delta}^{(\omega)}
$$

(c) By part (b), we have $\left|B_{\delta}^{(n)}\right| \geqslant 2^{n(H-\varepsilon)}(1-\varepsilon-\delta)$, That is for sufficiently loge $n,\left|B_{\delta}^{n}\right|>2^{n(H-\varepsilon)}$ which is the promised result of Theorem 3.3.1.
(a) $H(X)=0.970951$ bits.
(b) $x^{15} \in A_{0.1}^{(25)}$ iff $0.870951 \leqslant \frac{1}{25} \log \frac{1}{p\left(x^{50}\right)} \leqslant 1.070951 \quad$ (*)

By looking at the given toble we see that sequences which have mare than 11 ane's and less than 19 one's satisfy (*). (This port of the table was correct)
There are $\binom{25}{11}+\binom{25}{12}+\binom{25}{13}+\binom{25}{4}+\binom{25}{15}+\binom{25}{16}+\binom{25}{17}+\binom{25}{13}+\binom{(25}{19}=26366510$ elements on $A_{0.1}^{(25)}$
Probability of the typical set is $=0.936246$
(c) Smallest set that has probability 0.9 cantons elements with $k \geqslant 6$ ane's and 3680638 elements with exactly 12 one's.
So there are 20457854 elements in that set.
(d) The intersection con toms 20389448 elements.

The probability of the intersection is roughly ≈ 0.870638

